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Summary. Despite spectacular advances in molecular genomic technologies in the past two decades, resources available for
genomic studies are still finite and limited, especially for family-based studies. Hence, it is important to consider an optimum
study design to maximally utilize limited resources to increase statistical power in family-based studies. A particular question
of interest is whether it is more profitable to genotype siblings of probands or to recruit more independent families. Numerous
studies have attempted to address this study design issue for simultaneous detection of imprinting and maternal effects, two
important epigenetic factors for studying complex diseases. The question is far from settled, however, mainly due to the fact
that results and recommendations in the literature are based on anecdotal evidence from limited simulation studies rather
than based on rigorous statistical analysis. In this article, we propose a systematic approach to study various designs based
on a partial likelihood formulation. We derive the asymptotic properties and obtain formulas for computing the information
contents of study designs being considered. Our results show that, for a common disease, recruiting additional siblings is
beneficial because both affected and unaffected individuals will be included. However, if a disease is rare, then any additional
siblings recruited are most likely to be unaffected, thus contributing little additional information; in such cases, additional
families will be a better choice with a fixed amount of resources. Our work thus offers a practical strategy for investigators to
select the optimum study design within a case-control family scheme before data collection.
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1. Introduction
Genomic imprinting and maternal effects are both important
epigenetic factors that are involved in many complex human
diseases, including Prader-Willi and Angelman syndromes
(Lawson et al., 2013), and childhood cancers (Nousome et al.,
2013). Genomic imprinting (maternal or paternal) is an ef-
fect of epigenetic process involving methylation and histone
modifications in order to silence the expression of a gene in-
herited from a particular parent without altering the genetic
sequence. Maternal effect, on the other hand, refers to a sit-
uation where the phenotype of an individual is influenced
by the genotype of the mother regardless of one’s own geno-
type. Though genomic imprinting and maternal effects arise
from two different underlying epigenetic mechanisms, they
can produce the same parent-of-origin patterns of phenotypic
variation. As such, it is necessary to distinguish and study
these two confounding effects together to avoid false positives
and/or false negatives. There are a number of existing meth-
ods that do model imprinting and maternal effects simultane-
ously to avoid potential confounding. Such approaches include
a Likelihood inference method for detecting Imprinting and
Maternal Effects (LIME), which can utilize nuclear families
with an arbitrary number of affected and unaffected children,
no matter whether the father’s genotype is missing or not
(Yang and Lin, 2013; Han et al., 2013). LIME uses only part

of the full likelihood—partial likelihood—by exploiting the
fact that the part of the likelihood containing the parameters
of interest can be separated from that containing the nuisance
parameters. It thus alleviates the need to make typically unre-
alistic assumptions and thus leads to a robust procedure with
potentially greater power.

Despite spectacular advances in molecular genomic tech-
nologies in the past two decades, resources available for
genomic studies are still finite and limited, especially for
family-based studies. Hence, it is important to consider an
optimum study design to maximally utilize limited fixed
resources to increase statistical power using LIME to detect
imprinting and maternal effects simultaneously. The partic-
ular question of interest is whether it is more profitable to
genotype siblings of probands (individuals through whom
the families are recruited into the study) or it is more
informative to recruit more independent families, keeping the
total number of individuals needed to be genotyped fixed.
Such a question is of great interest in genetic epidemiology
in general, but the conclusions in the literature are mixed.
There are studies showing that recruiting a smaller number
of larger families is better than a larger number of smaller
families (Zhou et al., 2009; Han et al., 2013), but there are
also studies arguing for the reverse (He et al., 2011; Li et al.,
2014). There are yet another set of articles that show both
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may result depending on the underlying settings (Li and Cui,
2010; Sung and Rao, 2008). For LIME, in particular, Han
et al. (2013) carried out a limited simulation study to inves-
tigate relative power for detecting association, imprinting,
and maternal effects for several case-control family-based
study designs having the same total number of individuals.
They concluded that the results “suggest that collecting
more siblings rather than more families is a more effective
way to increase statistics power.” However, the conclusion is
far from settled as the evidence is weak and the conclusion is
based on a limited simulation. This is also true for the other
studies discussed above. That is, to date, there has been no
rigorous statistical analysis to address the study design issue
for detecting imprinting and maternal effects, to the best of
our knowledge; rather, all results and recommendations in
the literature are based on anecdotal evidence from limited
simulation studies. Our work here is to try to fill this void.

In this article, we propose a systematic approach to study
various study designs for simultaneous detection of imprinting
and maternal effects based on a partial likelihood formulation.
To enable such an investigation, we first derive the asymptotic
properties of the partial likelihood method that we employ for
simultaneous effect detection. In particular, we obtain closed-
form formulas for computing the information contents, either
family-based, or individual-based, of each study design that
is being investigated. Our results show that the conclusion
is more complex than any simple rule of thumb; rather, the
conclusion is dependent on the prevalence of the disease.

2. Asymptotic Study and Information
Calculation

2.1. The LIME Procedure

LIME considers a candidate marker with two alleles M1 and
M2, where M1 is the allele of interest, which may code for
disease susceptibility or epigenetic effect. In a nuclear fam-
ily, F and M are the genetic variables for father and mother,
which is coded as 0, 1, or 2, corresponding to genotype M2M2,
M1M2, or M1M1, respectively. For each child in the family, the
genetic variable C is defined similarly. LIME uses the multi-
plicative relative risk model

P(D = 1|M, F, C) = δ R
I(C=1)
1 R

I(C=2)
2

× R
I(C=1 & from mother)
im S

I(M=1)
1 S

I(M=2)
2 (1)

for the disease prevalence, where the parameters R1 and R2

denote the effect of one or two copies of an individual’s own
minor allele, Rim denotes imprinting effect, S1 and S2 denote
the effect of one or two copies of the mother’s minor allele,
and δ is the phenocopy rate. The indicator variable D denotes
the disease status of a child (1—affected; 0—normal).

To be sufficiently general to accommodate various designs,
we consider nuclear families with both parents present (case
or control complete families) and families for which fathers
are missing (case or control incomplete families). A case
(complete/incomplete) family is one for which ascertainment
(the conditional event) is through an affected child, whereas

a control family is ascertained through an unaffected child.
Each family may contain a number of additional, non-
probands, siblings who may or may not be affected. Clearly,
our ascertainment is not through a family, but through an
individual (proband; single ascertainment). Therefore, our
analysis will be conditional on the proband data to correct
for bias (Fisher, 1934), which is different from correcting for
bias for length-biased sampling. Suppose there are N1

t (N1
p )

and N0
t (N0

p ) affected and unaffected complete (incomplete)
families, respectively, then N = N1

t + N0
t + N1

p + N0
p is the

sample size, the total number of independent nuclear families.
Based on the ascertainment criterion, the proband (be it af-

fected or unaffected) will be treated differently from those who
are recruited after the family is ascertained. We use D1 = 1(0)
to denote the proband being affected (unaffected). We use
Di = 1(0) to denote the affection status of each affected (unaf-
fected) sibling, i ≥ 2. For a complete family, we use M, F, C1 to
denote the genotype scores (genetic variables) of the mother,
father, and proband, and we use Ci, i ≥ 2, to denote the geno-
type scores of additional siblings, if any. Each of such variables
can take the value of 0, 1, or 2 as described earlier. Probabil-
ity of the observed data from a complete family will then be
conditional on the affection status of the proband only (not
the other siblings):

P(M, F, C1, Ci, Di, i = 2, · · · | D1)

= P(M, F, C1|D1)
∏
i≥2

[P(Di|M, F, Ci)P(Ci|M, F)],

where D1 = 1 for a case family and D1 = 0 for a control
family, and the products over i ≥ 2 follow from Mendel’s
first law, which states conditional independence of children’s
data given parents’ genotypes. Thus, the genotype scores
of the probands can be thought of as obtained from a
“retrospective” design whereas the data for the additional
siblings are treated as from a “prospective” design. Following
the discussion in Yang and Lin (2013), for the part of data
that represent a retrospective design, we can extract from
the full likelihood a component (partial likelihood) that can
be thought of as the products of likelihoods from a stratified
prospective design (binomial kernels). This will then be com-
bined with the prospective part of the data. Specifically, each
proband and the parents form a proband–parent triad (either
case–parent or control–parent triad), whereas each additional
sibling (nonproband) and the parents form a sibling–parent
triad (either case–sibling–parent or control–sibling–parent
triad). Each triad can be classified according to their genotype
configuration (M, F, C). Let nmfc be the number of proband–
parent triads with M = m, F = f, and C = c, and among
such triads, n1

mfc and n0
mfc are the numbers of case–parent

and control–parent triads, respectively (nmfc = n1
mfc + n0

mfc).
We define snmfc, sn1

mfc, and sn0
mfc (snmfc = sn1

mfc + sn0
mfc)

similarly for sibling–parent triads. Further, denote the vector
of parameters of interest by θ = (δ, R1, R2, Rim, S1, S2)

�, and
the vector of nuisance parameters (including mating type
probabilities) by φ. With the fixed total of N1

t case complete
families and N0

t control complete families, the likelihood from
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the observed data can be written, up to a proportionality, as∏
(m,f,c)

P(m, f, c|D = 1)n1mfcP(m, f, c|D = 0)n0mfc

× P(D = 1|m, f, c)sn1mfcP(D = 0|m, f, c)sn0mfc

∝

⎧⎨⎩ ∏
(m,f,c)

(pmfc)
n1mfc(1 − pmfc)

n0mfc

⎫⎬⎭
×

⎧⎨⎩ ∏
(m,f,c)

(P(D = 1|m, f, c))sn1mfc(P(D = 0|m, f, c))sn0mfc

⎫⎬⎭
×

⎧⎨⎩ ∏
(m,f,c)

[smfcP(M = m, F = f, C = c)]n
1
mfc+n0mfc

⎫⎬⎭ , (2)

where

smfc ≡ smfc(θ) = N1
t P(D = 1|M = m, F = f, C = c)

P(D = 1)

+ N0
t P(D = 0|M = m, F = f, C = c)

P(D = 0)
,

pmfc ≡ pmfc(θ) = N1
t P(D = 1|M = m, F = f, C = c)

P(D = 1)

/
smfc(θ).

(3)

We note that the last term in (2) (i.e., term in the last set of
curly brackets) is the consequence of the reparameterization,
given in (3), applied to the likelihood formula given in the
first line. Further, P(D = 1) is the disease prevalence, which
can typically be retrieved from the Incidence and Preva-
lence Database (IPD) (http://www.tdrdata.com/IPD/ipd
init.aspx) or other sources.

We note that only P(M = m, F = f, C = c) contains the nui-
sance parameters in φ. That is, the factors within the first
two sets of curly brackets in (2) contain only parameters in
θ because only penetrance probabilities as defined in (1) are
involved, and therefore, it is treated as the partial likelihood
(Yang and Lin, 2013; Han et al., 2013). In fact, the first factor
can be regarded as the likelihood representing the reorganized
data conditional on each possible triad (m, f, c) type. Within
each type, counts of the case–parent triads and control–parent
triads follow a “renormalized” binomial distribution with the
following probability of being a case–parent triad:

pmfc ≡ pmfc(θ) = E(n1
mfc)

E(n1
mfc + n0

mfc)

= N1
t P(m, f, c|D = 1)

N1
t P(m, f, c|D = 1) + N0

t P(m, f, c|D = 0)

= N1
t P(D = 1|m, f, c)/P(D = 1)

N1
t P(D = 1|m, f, c)/P(D = 1) + N0

t P(D=0|m, f, c)/P(D=0)
,

where E(n1
mfc) and E(n0

mfc) denote the expectations of ob-
serving the (m, f, c) genotype configuration among the case–

parent triads and control–parent triads, respectively. This
manipulation turns data from a retrospective design into a
“prospective” likelihood stratified according to each type.
Thus, the “binomial kernel” probabilities in the first factor
represent the contributions from the probands. The second
factor, on the other hand, represents the contributions from
the additional siblings, whose affection statuses are obtained
prospectively and therefore the binomial probability is simply
the penetrance probability.

Similar argument as above can be applied to incomplete
families (with the exclusion of the case in which M = 1 and
C = 1 due to ambiguity of parental genotype contribution
(Yang and Lin, 2013)), leading to the following partial log-
likelihood based on all data:

lpar(θ) =
∑
m,f,c

{
n1
mfc × log[pmfc(θ)] + n0

mfc × log[1 − pmfc(θ)]

}
+

∑
(m,c) �=(1,1)

{
n1
mc × log[pmc(θ)] + n0

mc × log[1 − pmc(θ)]

}
+

∑
m,f,c

{
sn1

mfc × log[qmfc(θ)] + sn0
mfc × log[1 − qmfc(θ)]

}
+

∑
(m,c) �=(1,1)

{
sn1

mc× log[qmc(θ)]+ sn0
mc × log[1− qmc(θ)]

}
= lt1(θ) + lp1(θ) + lt2(θ) + lp2(θ),

where n1
mc, n

0
mc, sn

1
mc, and sn0

mc are genotype counts for
mother–child pairs defined similarly as for triads. Further-
more, pmfc(θ) and smfc(θ) are as defined in (3), and

smc(θ) = N1
pP(D = 1|M = m, C = c)

P(D = 1)

+ N0
pP(D = 0|M = m, C = c)

P(D = 0)
,

pmc(θ) = N1
pP(D = 1|M = m, C = c)

P(D = 1)

/
smc(θ),

qmfc(θ) = P(D = 1|M = m, F = f, C = c),

qmc(θ) = P(D = 1|M = m, C = c).

The effective total sample size, n, in the partial log-likelihood
lpar(θ), is computed as

n =
∑
m,f,c

[n0
mfc + n1

mfc] +
∑

(m,c) �=(1,1)

[n0
mc + n1

mc]

+
∑
m,f,c

[sn0
mfc + sn1

mfc] +
∑

(m,c) �=(1,1)

[sn0
mc + sn1

mc]

= (N0
t + N1

t + eN0
p + eN1

p ) + (sN0
t + sN1

t + esN0
p + esN1

p )

= (nt + enp) + (snt + esnp)

where (sN0
t , sN1

t ) are defined similar as (N0
t , N1

t ), and are
the total number of unaffected and affected siblings in all
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complete families, respectively, and eNj
p = ∑

(m,c) �=(1,1)
nj
mc,

and esNj
p = ∑

(m,c) �=(1,1)
snj

mc, for j = 0, 1. Hence, (nt + enp)
is the total number of independent nuclear families excluding
proband–mother pairs falling into the (m, c) = (1, 1) category,
and (snt + esnp) is the total number of additional siblings ex-
cluding those in incomplete families whose genotypes with the
mothers falling into the (m, c) = (1, 1) category.

We use the partial log-likelihood function lpar(θ) for statis-
tical inference about θ. The maximum partial likelihood esti-
mator (mple) of θ is denoted by

θ̂n = argmaxθ lpar(θ).

We assume that the mple is obtained by solving the score-
type equation

∂lpar(θ)

∂θ
= l′par(θ) = l′t1(θ) + l′p1(θ) + l′t2(θ) + l′p2(θ) = 0. (4)

2.2. Asymptotic Properties

We first introduce some additional notations. In the multi-
plicative relative risk model (1) for the disease prevalence,
let θ0 be the true value of the parameter θ = (δ, R1, R2, Rim,

S1, S2)
�. We assume that θ0 is an interior point of the param-

eter space � ⊂ R6.
As in standard likelihood theory, some regularity conditions

are needed in order to study the large sample behavior of the
mple θ̂n. To focus on the main results, these conditions are
listed in Supplementary Material A.1.1. Theorem 1 gives the
large sample behavior of θ̂n.

Theorem 1. Under regularity conditions R1–R5 in Sup-
plementary Material A.1.1, we have the following:

(i) The score-type equation (4) has a solution θ̂n that is a

consistent estimator of θ0, i.e., θ̂n −→p θ0, as n → ∞.
Furthermore, the consistent solution θ̂n is unique.

(ii) Asymptotic normality:
√

n(̂θn − θ0)−→dN(0, I−1(θ0)),
as n → ∞, where the information matrix I(θ0) is given
by

I(θ0) =
∑
m,f,c

[p′
mfc(θ0)][p

′
mfc(θ0)]

� × Bmfc

pmfc(θ0)(1 − pmfc(θ0))

+
∑

(m,c) �=(1,1)

[p′
mc(θ0)][p

′
mc(θ0)]

� × Bmc

pmc(θ0)(1 − pmc(θ0)

+
∑
m,f,c

[q′
mfc(θ0)][q

′
mfc(θ0)]

� × Cmfc

qmfc(θ0)(1 − qmfc(θ0))

+
∑

(m,c) �=(1,1)

[q′
mc(θ0)][q

′
mc(θ0)]

� × Cmc

qmc(θ0)(1 − qmc(θ0))

= I t1(θ0) + Ip1(θ0) + I t2(θ0) + Ip2(θ0),

where p′
mc(θ0), p

′
mc(θ0), q

′
mfc(θ0), and q′

mfc(θ0) are the
gradients of the corresponding probabilities evaluated
at θ = θ0, and 0 ≤ Bmfc < 1, 0 ≤ Bmc < 1, 0 ≤ Cmfc <

1, 0 ≤ Cmc < 1, are the limits in probability of nmfc
n

,
nmc

n
, snmfc

n
, snmc

n
, respectively, when n → ∞.

The proof is given in the Supplementary Material A.1.2.
Theorem 1 accommodates general cases. All the combinations
of proband triads/pairs with an arbitrary number of addi-
tional siblings are covered. For part (ii), the terms Bmfc, Bmc,
Cmfc, and Cmc are zero only for the cases without proband
triads, proband pairs, additional triads, or additional pairs,
respectively. The calculation of these constants are provided
in the Supplementary Material A.1.3.

2.3. Calculation of per Family and per Individual
Information Content

The Fisher information matrix I(θ0) given in Theorem 1 pro-
vides the expected information per effective family. To com-
pare different study designs, we need the expected informa-
tion per family and per individual, with the corresponding
matrices denoted as Ifam(θ0) and Iind(θ0), respectively. The
calculation of these two matrices in terms of I(θ0) is described
as follows.

We consider the general setting of mix families each with k

additional siblings, where k = 0, 1, 2, · · · . Let h be the ratio of
effective sample size n to the total count of family N, that is
h = n/N (with more details given in Supplementary Material
A.1.3). The expected information per family is then given by

Ifam(θ0) = n

N
× I(θ0) = h × I(θ0). (5)

Several examples are provided in the Supplementary Material
A.2.1.

To compute expected information per individual, let n∗ be
the total number of individuals involved, including all the
fathers, mothers, and offsprings. Denote g as the ratio of the
total number of individual involved to the total number of
families, that is, g = n∗/N. Then, the expected information
per individual is

Iind(θ0) = n

n∗ × I(θ0) = h

g
× I(θ0) = Ifam(θ0)

g
. (6)

An alternative representation (interpretation) and more ex-
amples are given in Supplementary Material A.2.2.

2.4. Numerical Study: Empirical versus Asymptotic
Variances

We first use extensive simulations under a variety of disease
models, scenarios, and small to large sample sizes to verify
the asymptotic properties of the procedure empirically. We
see from Table S1 and Figures S1–S8 in the Supplementary
Material, as the sample size increases, the relative differences
between a parameter and its corresponding MPLE get closer
and closer to zero. Further, the empirical distributions of the
relative differences are not distinguishable from a normal dis-
tribution based on a statistical test, as the sample size gets
larger. The full details are given in Supplementary Material
A.3.

To evaluate how well the asymptotic variances (diagonal el-
ements of I−1(θ0)) can approximate actual variances in finite
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Table 1
Eight disease models represented by relative risks and eight scenarios comprised of three factors

A. Disease models

Relative risk

Para.a 1 2 3 4 5 6 7 8

R1 1 2 1 1 1 3 1 3
R2 1 3 3 3 3 3 3 3
Rim 1 1 1 1 3 1/3 3 1/3
S1 1 1 1 2 1 1 2 2
S2 1 1 1 2 1 1 2 2

B. Scenarios

Factor value

Factorb 1 2 3 4 5 6 7 8

maf 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.3
prev 0.05 0.05 0.15 0.15 0.05 0.05 0.15 0.15
hwe 0 1 0 1 0 1 0 1

a R1: relative risk of carrying one variant allele;
R2: relative risk of carrying two variant alleles;
Rim: imprinting effect parameter with a single variant allele from mother;
S1: maternal effect with mother carrying one variant allele;
S2: maternal effect with mother carrying two variant alleles.

b
maf: minor allele frequency;
prev: prevalence (rare = 0.05; common = 0.15);
hwe: Hardy–Weinberg equilibrium (Yes = 1; No = 0).
Note that a specification of a disease model and a scenario completely determines the phenocopy rate δ and thus the penetrance model

in (1).

samples, an important issue for considering study designs with
finite sample sizes, we compare the two in a variety of combi-
nations of disease models, scenarios, and sample sizes. Specif-
ically, we consider eight disease models as given in Table 1A.
Note that the first model is a null setting with no genetic
effect (R1 = R2 = Rim = S1 = S2 = 1). Under each model, we
investigate eight combinations (scenarios; Table 1B) of three
factors: minor allele frequency (maf) {0.1, 0.3}, population
disease prevalence P(D = 1) (prev) {0.05, 0.15}, and whether
Hardy–Weinberg equilibrium (hwe) holds (no = 0, yes = 1).
Suppose p is the maf, then when hwe holds, the probabilities
of a genotype score being 0, 1, and 2 are (1 − p)2, 2(1 − p)p,
and p2, respectively. When hwe does not hold, the proba-
bilities are (1 − p)2(1 − ζ) + (1 − p)ζ, 2p(1 − p)(1 − ζ), and
p2(1 − ζ) + pζ, where ζ is the inbreeding parameter (Weir,
1996), which in our simulation is set to be 0.1 and 0.3 for
males and females, respectively. With the specification of each
scenario and a disease model, the phenocopy rate δ, and con-
sequently the penetrance probability (1) are fully specified.
Note that these eight combinations of scenarios are chosen
to compare and contrast the asymptotic behavior of LIME
in easier situations (larger maf/common disease/hwe) with
harder ones (smaller maf/rare disease/hwe does not hold).

We examine a total of nine data types: {P, M, T, P + 1, M +
1, T + 1, P + 2, M + 2, T + 2}, where “P” refers to the setting
in which all families in the sample are of “pair type” with the
father’s genotype missing; “T” refers to the setting in which all
families in the sample are of “triad type” with both parents’

genotype present, and “M” is a mixture of “T” and “P” with
the missing rate for father being 0.5 and 0.7 in affected and
unaffected families, respectively, in our simulation. The num-
ber after each letter designation (if any) is the number of ad-
ditional siblings (in addition to the proband) in each nuclear
family. For instance, data type T + 2 refers to a sample of fam-
ilies each with two parents, an affected/unaffected proband,
and two additional siblings who may or may not be affected.
In other words, each family is a complete nuclear family with
three children. A family is labeled as a case/control family in
our sample if the first child simulated is affected/unaffected
with the disease (the proband) regardless of the affection sta-
tus of the subsequent siblings. This is to mimic the single
ascertainment scheme in real genetic studies. Note that the
“first child” simulated does not necessarily have to be the
“first born”; rather, it is the first child that has come to the
attention (of a physician), and through whom the family is
recruited for the study. We repeat the process of simulating
each family until the desired numbers of families of both types
are met. The sample size N is set to be 200, 1000, 2000, and
10,000, with an equal number of case and control families. The
results are based on 500 replications, and the variance of the
estimates across the replications gives the empirical variance.

Figure 1 provides plots of differences between empirical and
asymptotic variances of parameter estimators for four data
types: P, P + 2, T , and T + 2, presented in four blocks. Within
each block, we show results for two sample sizes and four sce-
narios. In each plot, there are 40 points corresponding to the
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Figure 1. The difference between empirical and asymptotic variances for hwe = 1 versus hwe = 0 for four data types (four
blocks, each with four sub-figures): top left—P ; top right—P + 2; bottom left—T ; bottom right—T + 2. For each data type
(within each block), we show results for two sample sizes (N=1000 and N=10,000) and two scenarios: top row—maf= 0.1 and
prev= 0.15; bottom row—maf= 0.3, and prev= 0.05. This figure appears in color in the electronic version of this article.

five parameters under the eight disease models. Results for
all combinations of sample sizes, scenarios, and data types
investigated are given in Supplementary Figures S9–S17 and
are summarized in Tables 2 and 3. From the figures, one can
see that, as the sample size increases, all differences get closer
and closer to zero. Most of the points fall around the diagonal
line, showing that the difference between whether the hwe as-
sumption holds or not is minor, substantiating the property

that LIME is robust to departure from the hwe assumption.
Further, as we can see from Table 2, regardless of whether
HWE hold or not, R2 and S2 are much harder to estimate
precisely compared to R1 and S1 for a fixed sample size, es-
pecially for the smaller MAF scenarios, as there are fewer
people who are homozygous for the minor allele. Likewise,
Rim is also more difficult to estimate due to a smaller count
of mother–child pairs that are informative for estimating the
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Table 2
Average differencesa between empirical and asymptotic variances of the parameter estimators for each of the eight scenarios

and four sample sizes.

MAF= 0.1&PREV= 0.05 MAF= 0.1&PREV= 0.15 MAF= 0.3&PREV= 0.05 MAF= 0.3&PREV= 0.15

200 1000 2000 10,000 200 1000 2000 10,000 200 1000 2000 10,000 200 1000 2000 10,000

HWE=0 R1 0.81 0.11 0.05 0.01 0.35 0.07 0.04 0.01 0.58 0.09 0.04 0.01 0.38 0.07 0.03 0.01
R2 73.15 5.10 1.39 0.20 12.32 2.59 0.92 0.09 8.46 0.65 0.29 0.06 3.86 0.43 0.20 0.03
S1 1.16 0.11 0.05 0.01 0.43 0.08 0.04 0.01 0.63 0.09 0.04 0.01 0.37 0.06 0.03 0.01
S2 39.85 4.39 1.14 0.07 16.21 0.74 0.26 0.03 3.17 0.24 0.11 0.02 1.24 0.14 0.07 0.01
Rim 49.01 5.06 1.30 0.11 9.39 0.93 0.40 0.05 9.30 0.47 0.20 0.04 4.25 0.29 0.13 0.02

HWE=1 R1 0.91 0.11 0.06 0.01 0.36 0.08 0.04 0.01 0.68 0.10 0.05 0.01 0.42 0.07 0.03 0.01
R2 58.05 3.43 0.97 0.15 8.27 2.07 0.76 0.07 4.14 0.43 0.21 0.04 2.18 0.31 0.14 0.02
S1 0.61 0.08 0.04 0.01 0.31 0.06 0.03 0.00 0.52 0.07 0.04 0.01 0.32 0.06 0.03 0.01
S2 47.42 9.68 4.93 0.25 8.94 1.37 0.76 0.08 5.28 0.25 0.12 0.02 1.57 0.15 0.07 0.01
Rim 37.98 13.49 7.48 0.31 7.84 1.42 0.86 0.13 11.80 0.48 0.22 0.04 4.14 0.32 0.13 0.02

aEach number in the table is averaged over eight models and nine data types.

parameters. It is also apparent from the table that it is easier
to estimate model parameters for diseases with a larger preva-
lence, as the differences are smaller compared to those with a
smaller prevalence. Comparing across all nine different data
types (Table 3), one can see that, as expected, the T data
types, consisting of all complete families and thus more infor-
mation, have smaller differences between the empirical and
asymptotic variances for a fixed sample size. Furthermore,
additional siblings provide extra information.

3. Study Design Consideration

Results from the above numerical studies and those presented
in Supplementary Material A.3 show that, regardless of the
data type, parameter estimates will be close to the true pa-
rameter values for a large enough sample size. However, in
any real study setting, resources are finite, therefore, it is im-
portant that one chooses a study design that is efficient and
practicable. To address this issue, we compare nine study de-
signs (the nine data types in our numerical study) through
consideration of information content per family and per in-
dividual (in the next two subsections). We limit ourselves to

only nine data types for easy presentation but the conclusion
is more generally applicable to adding any number of siblings
as we discuss below. We also perform sample size calculation,
with some general observations summarized here and detailed
results presented in Supplementary Material A.4 and Supple-
mentary Tables S2–S9. The sample size needed to achieve a
certain precision is the smallest for the T + 2 study design,
whereas the P design requires the largest sample size, as one
would expect. It is also seen that the homozygous genetic ef-
fect (R2), homozygous maternal effect (S2), and the imprint-
ing parameter (Rim) are typically more difficult to estimate
accurately, as there are fewer families informative for these
parameters, for example, mother being homozygous for the
minor allele.

3.1. Information Content per Family

The information content per family is computed based on (5);
see Supplementary Material A.2 for the formulas for calculat-
ing such quantities for different data types. It is clear from
the simulation study that it is advantageous to have complete
families and additional siblings. To more clearly delineate this

Table 3
Average differencesa between empirical and asymptotic variances of the parameter estimators for each of the nine data types,

four combinations of scenariosb, and four sample sizes.

MAF= 0.1&PREV= 0.05 MAF= 0.1&PREV= 0.15 MAF= 0.3&PREV= 0.05 MAF= 0.3&PREV= 0.15

200 1000 2000 10000 200 1000 2000 10000 200 1000 2000 10000 200 1000 2000 10000

T 36.17 1.87 0.49 0.07 6.83 3.15 1.01 0.04 2.99 0.26 0.12 0.02 1.88 0.35 0.16 0.02
T+1 10.59 0.64 0.26 0.05 2.51 0.24 0.11 0.02 1.71 0.20 0.09 0.02 0.84 0.11 0.05 0.01
T+2 5.67 0.42 0.20 0.04 1.55 0.16 0.08 0.01 1.27 0.16 0.08 0.01 0.62 0.08 0.04 0.01
M 48.27 2.18 0.57 0.08 8.52 0.65 0.29 0.05 4.91 0.33 0.15 0.03 3.08 0.24 0.11 0.02
M+1 13.19 0.74 0.30 0.05 3.05 0.27 0.13 0.02 2.64 0.25 0.12 0.02 1.16 0.14 0.07 0.01
M+2 8.11 0.49 0.23 0.04 1.99 0.18 0.09 0.02 1.82 0.20 0.10 0.02 0.80 0.10 0.05 0.01
P 84.28 16.74 7.52 0.38 17.25 2.10 1.11 0.16 13.87 0.53 0.23 0.04 4.98 0.34 0.15 0.03
P+1 41.95 7.68 3.66 0.18 10.37 0.96 0.52 0.07 6.86 0.37 0.17 0.03 2.04 0.19 0.09 0.02
P+2 29.80 6.66 2.45 0.13 5.90 0.74 0.35 0.05 4.03 0.29 0.14 0.02 1.45 0.14 0.07 0.01

aEach number in the table is averaged over eight models, five parameters, and two HWE levels.
bEach combination is by collapsing the two HWE levels with the same MAF and PREV.
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Figure 2. Information content per family for parameter estimation from the nine study designs (data types): {P, P + 1, P +
2, M, M + 1, M + 2, T, T + 1, T + 2}. Each of the four column blocks represent an maf and prev combination. Within each
block, information from the nine data types are presented in the order as indicated in the figure. In the top half, each of the
five blocks provide information for the estimation of each of the five parameters under hwe. Furthermore, each of the eight
rows within a row block represent the eight disease models (DMs) in the order as indicated. The bottom half provides the
same information but with the hwe assumption being violated. This figure appears in color in the electronic version of this
article.

advantage from a theoretical point of view, we show, in Fig-
ure 2, the expected information content from a single family
for estimating the five parameters. The eight combinations of
maf, prev, and hwe are organized into two sets of row blocks
(top and bottom) and four column blocks. Each column block
contains information for nine study designs, with ordering in-
dicated in the figure. The five subblocks within each set of
the two row blocks correspond to the five parameters. Fur-
thermore, each of the eight rows within each block are for the
eight models as given in Table 1A. As expected, the amount of
information increases from left to right (Figure 2) within each
of the four column blocks, indicating that a complete family
contains more information than an incomplete one when fa-
ther’s genotype is missing, and therefore, the information con-
tent for a mixed type is in-between. Additional siblings also
increase the family information content. We can also see from
the figure that increasing maf from 0.1 to 0.3 and/or prev

from 0.05 to 0.15 enriches the information contained in the
sample for estimating the parameters. The eight models also
exhibit differences, although to a lesser extent than the study

design. In general, there tends to be greater information for
estimating R1 and S1 than for R2 and S2. The information for
estimating the imprinting parameter, Rim, is especially model
dependent, with particularly strong information for models 6
and 8, which portraits strong maternal imprinting and asso-
ciation effects. We note that, although there can be large dis-
crepancy in the empirical and asymptotic variances in small
samples (see first column of Figures S9–S17), especially for
estimating R2, Rim, and S2, the use of information content
remains a reasonable way of evaluating design efficiency since
the patterns of discrepancy are similar across the different
designs considered.

3.2. Information Content per Individual

In practice, resources are fixed, such as labor, time, equip-
ment, and fund, which can only permit genotyping a limited
number of individuals in a study. Thus, it is important to de-
cide how to distribute the resources. To this end, we consider
the information provided by a single individual for each of
the nine study designs, thereby taking the size of each fam-
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Figure 3. Information content per individual for eight disease models and two prevs with MAF = 0.3 and HWE = 1. Each
curve provides the information for estimating one of the five parameters, for a particular family type with 0, 1, or with 2
additional siblings. The study designs considered are the T and P data types. This figure appears in color in the electronic
version of this article.

ily (genotyping cost) into account. This is asymptotic infor-
mation, thus there is no need to specify a sample size. This
information is particularly useful for designing a study that
only has resources for genotyping a fixed number of individu-
als. Figure 3 shows the information content per individual for
six study designs, the P and T types, when hwe holds and
maf is 0.3 (scenarios 6 and 8 in Table 1B). Plots for the other
three study designs, the M types, are given as Supplementary
Figure S18. We only show results for these six types in Fig-
ure 3 to make the contents more easy to digest without loss

of generality, as the figures show that the information content
per individual in an M-type family is always in between that
of the corresponding P and T types. As can be seen from Fig-
ure 3, information content per individual is always higher in
a triad family than in a pair family with the same number of
siblings for estimating any of the parameters. Therefore, it is
worth the extra effort to recruit both parents if at all possible.

On the other hand, one striking feature is that including
additional siblings may or may not lead to a greater amount
of information when genotyping cost is taken into account, re-
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gardless of whether it is a complete or an incomplete family.
Whether it is beneficial or not to recruit additional siblings de-
pends on whether the additional information contributed by
a sibling is greater than the average information contributed
by an individual in a family with only parents (or mother)
and probands. More precisely, suppose IT is the per individ-
ual information per triad family, and IS is the additional in-
formation contributed by an additional sibling, then the per
individual information of a triad + k sibling (k ≥ 1) family is
greater than a per individual information for a triad only fam-
ily if and only if IS > IT . This is similarly true for a pair family.
Therefore, if the average information for a proband and his
or her parent(s) is higher than the extra information gained
by adding a single sibling, the average individual information
will decrease by recruiting additional siblings. Conversely, if
the average information for a proband and the parent(s) is
lower, we can take advantage by recruiting additional sib-
lings. From Figure 3, we can see that, for a disease with low
prevalence (prev= 0.05), having larger families will in fact be
counter productive since each additional individual does not
contribute much to the estimation. On the other hand, for
a relatively more common disease (prev= 0.15), recruiting
larger families is more efficient. This makes sense intuitively
as both cases and controls are likely to be present in the ad-
ditional siblings if a disease is common, whereas most likely
only unaffected siblings will be recruited if the disease is rare.
These observations are consistent with the limited simulation
study presented in Han et al. (2013), in which the authors only
considered prev= 0.15 and concluded that larger families are
more cost effective than families with probands only. Never-
theless, our results provide a comprehensive view of the situa-
tion, aided by the asymptotic theory. The take-home message
is that which study design is suitable for a particular study
depends on the (hypothesized) characteristics of the disease,
with the population prevalence (which is typically available)
being the most important factor, although the underlying dis-
ease model may play a role as well. Results for the other sce-
narios (1–5 and 7) lead to the same conclusion; all results are
summarized in a heatmap (Supplementary Figure S19). To
sum up, the conclusion drawn in Han et al. (2013) is only
partially true. Aided by the asymptotic results, we can draw
a more definitive conclusion: it is not always advantageous to
recruit additional siblings; additional siblings can increase the
efficiency of a study only when the disease being investigated
is sufficiently common.

4. Discussion

In this article, we present a methodology for investigating,
in a family-based design for detecting imprinting and mater-
nal effects, whether it is better to recruit bigger families or
smaller ones, by keeping the total number of individuals for
genotyping to be the same. With the availability of large-
scaled genotype data, case-control-family-based designs are
considered to be a new paradigm for genetic epidemiology
research (Hopper, 2003). Breast cancer research is one exam-
ple where case-control family designs have been used (Becher
et al., 2003). Studies of autism, binge eating disorder, and
inflammatory bowel disease are other examples where case-
control family designs have been utilized (Bolton et al., 1994;

Javaras et al., 2008; Li et al., 2014). The method proposed in
this article will be useful in aiding researchers in planning ef-
ficient designs to achieve desired estimation accuracy. Specifi-
cally, we demonstrate that this work offers a practical strategy
for investigators to select the optimum study design within a
case-control family scheme for a specific disease model be-
fore data collection. Although this work focuses on the LIME
method for detecting imprinting and maternal effects, the
strategy can be more generally applicable to other family-
based designs, such as those based on the parent-asymmetry
test (Zhou et al., 2009) or those for quantitative traits (He
et al., 2011; Koning et al., 2002; Sung and Rao, 2008).

The cost consideration and some technical issues deserve
further elaboration and discussion. Our conclusion on an ef-
ficient study design was based on the average (per individ-
ual) information content, which is related to genotyping cost.
However, in any practical situation, there are more factors
that should be considered when selecting an efficient study de-
sign. Genotyping cost is just one of the important attributes;
phenotyping and family recruitment can be more expensive
because of availability of cost-effective large-scale genotyp-
ing techniques. As such, if additional siblings are available,
it would still be beneficial to recruit them, as LIME can be
applied to a sample with a mixture of different data types.

Recall that in our partial likelihood formulation, case–
mother and control–mother pairs with genotype combina-
tion (1, 1) are excluded due to ambiguity of parental geno-
type contribution. This exclusion may lead to potential power
loss (Yang and Lin, 2013), but not bias. This is because
LIME turns a retrospective design into a prospective one
through conditioning on each combination of genotype pairs
(for proband–mother pair data). As such, data for each geno-
type combination (with combined data from case and con-
trol families) contribute independently to the partial like-
lihood. What is important is the “relative proportions” of
case–mother/control–mother pairs within each genotype com-
bination. As such, deleting proband–mother pairs with (1, 1)
genotypes will not lead to bias. Also, as we pointed out ear-
lier, population prevalence for common diseases can typically
be obtained from databases. Nevertheless, we evaluated the
effects of misspecification of prevalence by as much as 20%
over, or under, the true value. We can see, from Figure S20,
that the powers and type I errors closely track those with the
correct specification, demonstrating robustness of the LIME
procedure with moderate departure from population preva-
lence.

As we saw in Figure 1 and Supplementary Figures S9–S17,
parameter estimates (especially for R2, Rim, and S2) can be
far from their true values, due to a flat partial likelihood sur-
face. As such, initial values are important. Other than the
typical recommendation of multiple initial values, a strategy
that works well in our study is the use of estimates from a
subset as the starting point for the full data sets to obtain
accurate estimates. The idea is that a smaller data set can
more easily identify the neighborhood where the maximizer
resides, whereas a larger data set can provide greater amount
of information to find the maximizer itself. Alternatively, one
may consider a regularized partial likelihood to rein in any
potentially wild estimates, although this is out of the scope
of this article.
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5. Supplementary Material

Web Appendices, Tables, and Figures, referenced in Sections
2, 3, and 4, and an R package for calculating information and
sample size, may be accessed at the Biometrics website on
Wiley Online Library.
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